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DYNAMIC ANALYSIS OF COMPOSITE MEMBERS
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Abstract—The exact and approximate analysis of composite members with partial interaction
and subjected to general dynamic loading are presented. General closed-form solutions for the
displacement functions and the various internal actions in the composite elements are presented for
both the exact and approximate cases. The solutions reduce to the well-known values for the
extreme cases of interlayer connection: non-composite and full composite action, respectively. An
approximate solution for the eigenfrequencies in the exact analysis procedure is proposed and
evaluated by comparison with the exact solution. These solutions show the effect of interlayer
connection on the eigenfrequency. The exact and approximate analysis procedures are applied to
simply-supported beams subjected to impulsive and step loadings to illustrate the difference in the
solutions obtained by the two procedures. Very good agreement is obtained between the results of
exact and approximate analysis of these particular cases.

1. INTRODUCTION

Composite structures of different materials are frequently used in building, bridge and
shelter construction (Fig. 1). Those structures can be subject to different kinds of dynamic
loadings. Buildings are subjected to wind and gust loadings, and machine and human loads,
bridges to traffic and moving loads, and shelters to blast, ground shock wave and impact
loadings.

Composite structures are defined as structures built up by structural self-carrying
subelements connected by shear connectors to form an interacting unit (Fig. 1). The
behaviour of composite members depends to a large degree on the type of connection
between the subcomponents. In the case of dynamic loading the shear connectors also
govern the energy absorption capacity and the damping characteristics. A typical load-slip
diagram for a flexible shear connection is shown in Fig. 2. The usual non-linear relationship
is frequently approximated by a linear relationship, ¥, = KAu, i.e. by using a constant slip
modulus (K). For members subject to static loads the secant slip modulus is frequently
used (dashed line in Fig. 2), but in the case of dynamic and buckling loads, the tangent slip
modulus should be used (dashed-dotted line in Fig. 2). The concentrated forces from
mechanical shear connectors are usually distributed uniformly along the length of the
member in order to simplify the analysis.

Exact static analysis procedure for composite beams with partial interaction is well
established. Corresponding exact analysis procedure for beam-columns has been presented
by Girhammar and Gopu (1991, 1993a). Also, approximate static analysis procedures have
been proposed by Girhammar (1992) for composite beams and by Girhammar and Gopu
(1991, 1993b) for beam-columns. The purpose of this paper is to present corresponding
exact and approximate dynamic analysis procedures for free and forced vibrations of com-
posite Euler—Bernoulli beams with interlayer slip. The dynamic analyses of composite beams
carried out by Girhammar (1985a) for a simple case and by Girhammar and Pan (1992)
form the basis of this work. Henghold (1972) derived and solved the governing differential
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=

Fig. 1. Typical composite structures of concrete, steel and wood used in bridge, building and shelter
construction.

equations for free vibrations of layered beams including slip. The exact analysis is based
on the one-dimensional, linear elastic, partial composite action theory, and the approximate
analysis on energy considerations for an equivalent single-degree of freedom system. Full
composite action (infinite slip stiffness, K — c0) and non-composite action (zero slip stiff-
ness, K — 0) represent upper and lower bounds for the partial composite action.

2. EXACT STATIC ANALYSIS

The exact dynamic analysis procedure developed in the next section will be based on
the exact static analysis procedure presented in this section (Girhammar and Gopu, 1993a).
The geometric parameters defining a typical composite beam with two subelements of
different materials are shown in Fig. 3. A general loading on a typical beam is shown in Fig.
4. The lateral load is distributed with an intensity ¢ which varies with the distance x along
the beam. The x-axis of the coordinate system is located in the centroid of the fully composite
section. The support conditions are not specified, since they can be of any kind. Only the
location of supports is represented by dots as in Fig. 4.

Consider the free-body diagram of a differential element (Fig. 5) in the composite
beam subject to transverse load as shown. Moment, shear force, normal force and slip force
per unit length are denoted as M, V, N and V,, respectively. The aforementioned one-
dimensional, linear elastic, partial-composite-action theory for a composite beam is based
on the assumptions given by Girhammar and Gopu (1993a) with the additional assumptions

INTERLAYER
SHEAR FORCE | (N/m)

Ys

Tangent Slip Modulus K

Secant Slip Modulus K

INTERLAYER SLIP Au (m)
Fig. 2. Typical load-slip characteristics for flexible shear connectors in composite structures.
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Fig. 3. Geometric parameters of composite beam.
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Fig. 5. Differential element in the composite beam subject to a distributed transverse load.

that friction effects and damping are neglected. They derived the following differential
equation in terms of the displacement w (in the case of no axial forces) :

d*w d_z__ M1 &M (ay
ax Y a2 T Y EL T EIL 4

or
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dw déw q 1 dg
2 o oyt oo b
dxt " dvt T T B T EL (1)
where
, Kr?
VL A (2)
EI (1 EI“)
0 EI,
Kr
- 3
B EL (3)
El, = E\I,+E,I,, 4)
g, = o _ gy BT (5)
w T ] g - 0 EA() ’
EAy,=E A, +E,A,, (6)
EA, = E\A," E,A,, (N

and K = slip modulus (N m~?), E;I; = bending stiffness of the ith subelement, EI, = bend-
ing stiffness of the non-composite section (K — 0), EI, = bending stiffness of the fully
composite section (K — o), E; A4, = axial stiffness of the ith subelement, E4,, EA, = sum
and product, respectively, of the axial stiffness of subelements, r = distance between the
two centroids.

The general solution of eqn (1b) is given by (Girhammar and Gopu, 1993a):

w = a, sinh (ax) +a, cosh (ax) + a3 X’ + a,x* + asx+ae+ wy, (8)

where a,—a, are integration constants determined by the boundary conditions and

1 (*{ ,EI d’ } :
Wps = S EL J {az EL q(s) — di(zs)} {a(x—s) + % (x—s5)* —sinh [a(x —s)]} ds, (9)

0

where s is a dummy variable. Knowing the solution w for a given set of boundary conditions,
the various internal actions can be given in terms of w as foliows (Girhammar and Gopu,
1993a) :

EI, d*w d’w  EI,
M=M""M?_N'r:]TW_EI”a?_mq’ (10)
Vevity,=M (11
IR P
N = —N, = l(M Er, Y 12
1= 2 = ’ + dez ) ( )
dN, _dN,

V, = KAu= — 1 =202
s = Kau dx dx (13)
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d2
M= —El T, (14)
dM;
Vi= dx + Vir;. (15)

The boundary conditions can be expressed as follows : for a pinned end the conditions
w = M,;= N, =0 give, according to eqns (14) and (12):

w =0,
d*w
=0
d'w ¢
o T B (16a,b,c)

w=20,
dw
=0
d’w EI,\d*w 1 dg
&?—a (I—E)EXT—E—I;(T)E (17a,b,c)

For a free end the conditions M, = N, = V = 0 give, according to eqns (14), (12) and (11):

dZw

& =0

d'w _ g

dx4 EIO ’
d’w ,d’w 1 dq

8}—5——11 ax—3'=ﬁo—a (]8a,b,c)

It can be shown by the use of the principle of minimum energy that the differential equation

(1b) together with the boundary conditions (16), (17) and/or (18) constitutes a well-posed
problem.

3. EXACT DYNAMIC ANALYSIS

3.1. General

In the case of dynamic loading, p(x, ?), the following relationship is valid according to
d’Alembert’s principle :

*M _ 0*w

9= =G = "Mz P ()

where m = m, +m, [kg m~'] is the sum of the mass per unit length of each subelement.
Substituting eqn (19) in eqn (1b), the governing partial differential equation for composite
members with incomplete interaction subject to dynamic loading, p(x, ¢), is given as
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 o,m é‘zw_ a? n 1 &% 20
ax! TV EL o~ T ELPTEL ox )

0w 284w+ m 0w
A ST A
6)(4 EI() (’312

The general solution for eqn (20) can, according to the method of separation of
variables, be written as

w=¢(x)f({) = Zd),,(x)f,,(t); free vibrations (p = 0), 2n
w=@()F(1) =Y ¢,(x)F,(r); forced vibrations (p = p(x, 1)), 22)

where ¢, are the eigenmodes determined for p = 0 and depend on the boundary conditions,
/, are the time functions for natural vibrations, and F, are the time functions determined
for p = p(x, t) and depend on the initial conditions. If the solution for w is known, the
internal moment is given by substituting eqn (19) into eqn (10), i.e.

EI o*w £l 0w L m EI. 0°w  EI, 23)
a? ox* *ox?  a® EI, 0t* azEIOP'

M= M|+M2—N]r=
The other internal actions are then obtained from eqns (11)-(15) recognizing that the
internal moment now is given by eqn (23) and that differentiation with respect to x now
represents partial differentiation with respect to x. For the special case of non-composite
action (V, = 0; K — 0), the internal actions can be computed from eqns (12)—(15) recogniz-
ing eqn (23) and that 8’w/dx? = — M/EI, and 8°w/0x* = — V/EI,:

Nig= Ny, =0, (24)
Vio =0, (25)
E.I

o=t 2

MI.O EI() M5 ( 6)
E

= . 2

V!.O EIO V+ Vs.()rta ( 7)

where the second subscript 0 implies solutions corresponding to non-composite action. For
the other special limit case of fully composite action (Au = 0; K — o0), the internal actions
can be obtained from eqns (12)-(15) after recognizing eqn (23) and that
0*w/dx® = — MJEI,, and 0°w/0x® = — V/EI:

EI.\M

Ni,=-Ny,.= (1— “EIO)‘}’ (28)

EI,\V

Vi =—{1- "]~
- (1 sz) ~ (29)

El
M. EL M, (30)
E. I

Vv, =_"1 .

i = gV Vel (1)

where the second subscript co implies solutions corresponding to full composite action.
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The boundary conditions can be obtained by substituting eqn (19) into eqns (16)--(18).
The boundary conditions for pinned and clamped ends are obtained from eqns (16) and
(17), respectively, changing d/dx — d/0x and g — p. For a free end the expressions are
obtained as:

Iw_
oxt 7

o'w  m *w  p

ox* TV EI, o7 T EI,’
’®w  L0w m Ow 1 dp
o " a0 YV EL ax o ~ EL o5 (322,5,0)

The initial conditions are expressed in the conventional way by the initial displacement
w(x, 0) and by the initial velocity dw(x, 0)/dt.

3.2. Free vibrations
Introducing expression (21) in (20) for p = 0 the following two ordinary differential
equations are obtained :

d6¢n 2d4¢n 2 m d2¢" 2.2 m

dx® —a dx? — ), E,—IO ——dxz +wyo EI-OO'(i),, = 0, (33)
df, )
a7 +w.f,=0. 34

Equations (33) and (34) imply that the common constant for the two equations, the
eigenvalues w;, are chosen as positive values. Thus, eqn (34) represents harmonic vibrations,
i.e. f(t) = exp (iwf) and f,(¢) = exp (iw,t), respectively, where i is the complex number.
Harmonic motion is consistent with the fact that a conservative system has a constant
energy. (However, showing mathematically that w? > 0 for the boundary conditions
discussed above seems possible only for pinned end cases.)

The general solution for eqn (33) is given by

6
¢n = Z ¢ eki'"xa (35)
i=1

where ¢; = integration constants, which are determined by the boundary conditions, and
k;, are the roots of the following polynomial:

2 M

m
2 2,2
" El, ki, +ow,o 0. (36)

233 _ 020232 =
(ki,n) o (kl‘ll) ), EI@

Solving the cubic eqn (36) it can be easily shown that k2, < 0, k3, > 0 and k3, > 0, i.e.
the roots are given as +ik,,, +k,,and +k,,. The general solution can then be written as

¢, = ¢, sin (k,,x)+c¢; cos (k ,x) +c3 sinh (k,,x) +c4 cosh (k,,x)

-+ Cs Sinh (k3,,,x) <+ Ce COSh (k 3,,,x). (37)
The boundary conditions needed to determine the constants ¢,—c, are given by eqns (16),
(17) and (32). The boundary conditions for pinned and clamped ends are obtained from

eqns (16) and (17), respectively, changing w — ¢ and p = 0. For a free end the expressions
are obtained as

SAS 30:6-€
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ae =Y
d*¢ .mo
axt = g, =0
d’ ¢ d*¢ »? m d¢
P Rl A el (382,b,0)

It is noted in eqn (38) that the boundary conditions depend on the eigenvalue w®. This is
due to inertia forces caused by the distributed mass m.

The roots k3, <0, k3, >0 and k3, >0 in eqn (37) are given by eqn (36). The
eigenvalues w? in this equation, which provide solutions to the problem, are related to the
roots k7, < 0. Equation (36) can then be rewritten as

, ki, , El, ki,
Wy, 0 - Wy,
2 ?,n+a2k‘l‘.n klnl 0E‘IOkan
w; = = - = , 39)
ikZ + _m_ 2 EL -1 ﬂ —1
El, " " EI, EI, El,
R e L
L4 o 1+
k%,n k%’l
where
2 kl R O
Wy = - (non -composite action), (40)
wEIl, . .
0} = —l"m— (full composite action). (41)

In the general case of arbitrary boundary conditions the eigenvalues are obtained from
large and complicated transcendental equations, which require numerical solutions. The
iteration is conveniently carried out in the following way :

(1) assume w,;
(2) calculate k,,, k,, and k;, from eqn (36) ;
(3) satisfy the transcendental equation.

Once an eigenvalue for a particular set of boundary conditions is known, its associated
eigenmode can be determined. This is done by removing one of the equations for the
boundary conditions. This leaves five equations in six unknowns which may be solved by
assuming the value of one of the ¢s.

The non-dimensional fundamental eigenvalues w?/w} ., for the four Euler boundary
conditions (clamped-free, pinned-pinned, clamped-pinned, clamped-clamped) have been
calculated and are shown in Figs 6(a)-6(d) as a function of the non-dimensional parameters
a’/k} . and EI/EI, (solid lines). Note that the first parameter is proportional to the slip
modulus K and therefore expresses the degree of composite action. Thus, for a?/k} . =0
then w}/wi, - wl,/wl, = EL/EL, and for a’/k?  , — o then wi/wl, - wl jol., = 1.

An approximate solution for composite beams with interlayer slip is here proposed to
be obtained by using the characteristic values of k,, given for beams with full composite
action (or non-composite action) as:

A
pL’

kip=kiye = kino= 42)
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where

(n—1/2)""
(nt0)~';
(n+1/49)~!
(n+1/2)~!

Hn =

; #,=1675 Eulercasel;nz=2,
u =1 Euler case 2, (43a.b.c.d)
;o =08 Euler case 3,

; ) =0.667 Eulercase 4,

where Euler case denotes beams with boundary conditions according to the four Euler

cases. If eqn (39) is written as

where

EIeﬂ‘ =

(a)

Elg
2 = 2 i
Wy = Wy EL°

(44

4
kl,n
4
kl.n.oo

El, ’

i

El
4+
I+
k2

El,

(45)

2

{®
1,00

2

1

®

Relative eigenfrequency

Exact ki lvalues
o~ == Approximate k1 , values

(max. error -3.3% and -5.9% for
l':‘I__/EIo = 2 and 4, respectively)

NEREELY PSR W Ty | P

0 L1l
0.01 0.1

Composite action coefficient o /kl -

1 10 100
2

Fig. 6a. Relative eigenfrequency w?/w? , versus a/k?, ., with different values of EI_/EI, for Euler

casec

1 obtained by exact analysis.
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3
z N
g i 2
S o4l % B _
o =
“é o, ..2 EL
g ! '
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(max. error 0%)
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. . . 2
Composite action coefficient o /k  *
Fig. 6b. Relative eigenfrequency wi/wi,, versus a’/k?, . with different values of EI/EI, for Euler
case 2 obtained by exact analysis.

the approximate solution (42), i.e. kK, & k, , », gives

EL,

El, 1'
El,
l+f“2
l+k?

Lo

Elg ~ (46)

El; denotes the effective composite bending stiffness for the composite beam with partial
interaction [cf. Girhammar (1985b)]. Equation (44) together with (46) is represented in
Figs 6(a)-6(b) (dashed lines). (Note that the approximate solution (42), applicable to all
n, is compared to the exact solution for n = 1.) As is evident from the figures, the accuracy
is extremely good for Euler cases 1 and 2 (in fact the exact and approximate values are
identical for Euler case 2), but not so good for Euler cases 3 and 4 (maximum error 7—
21%). In order to obtain more accurate values for the fundamental eigenfrequency for
practical values of the partial composite action parameter 1 < aL < 15 (which gives
0.28 < a?/k?, . <64, 0.10 <a?/k?, . <23, 006<a®%?, <15 and 0.05<a?
k?, . < 10 for the Euler cases 1, 2, 3 and 4, respectively) the following Euler coeffi-
cients should be chosen (a mean value for the two cases EI,/El, =2 and 4 has been
chosen) :
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{c) @ ?

Relative eigenfrequency

02 g
Exact ki,l values
— = Approximate kl,l values
(max. error 7.1% and 14.4% for
I':'I__/EIo = 2 and 4, respectively)
o a1 sl sl a1 sl N Ly
0.01 0.1 1 10 100

. . . 2
Composite action coefficient o / k| :

Fig. 6¢c. Relative eigenfrequency wi}/w? ., versus a*/k} . with different values of EI,/EI, for Euler
case 3 obtained by exact analysis.

1.68; Max. mean error 4%

1; Max. mean error 0% for k;x_ > 0.1
B =9 b (47a,b,c.d)
0.82; Max. mean error 3%

L0.69; Max. mean error 5%

Knowing the solution ¢ for a given set of boundary conditions, the internal moment
can, according to eqn (23), be expressed in terms of the eigenmode as

o _El, —%

o [EL, d*¢ d*¢ ,m El, )
M=c <a—dx“ ~ax Y 2 EL ) (48)

The other internal actions are then obtained from eqns (11)—(15) recognizing that the
internal moment now is given by eqn (48) and that w — ¢.

3.3. Forced vibrations
Equation (22) is valid only if ¢, are an orthogonal set of eigenfunctions satisfying the
self-adjoint eigenvalue problem (33) with the homogeneous boundary conditions:
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Fig. 6d. Relative eigenfrequency w?/w?,, versus «’/k}, . with different values of EI_ /EI, for Euler

case 4 obtained by exact analysis.

Bjl¢] =0, (49)
D;[¢] = 0’C;[4], (50)

and the normalized orthogonality relation,

L m d?¢, m
J:) ¢m(E—IO dx2 _azE¢n)dx+;¢m(03L)Cj[¢n(O’L)] = 5mn’ (51)

where B;[¢], D;[¢], and C,[¢] are linear homogeneous differential operators containing
derivatives normal to the boundaries (0, L) and along the boundaries (0, L) through order
five, and 4,,, = Kronecker’s delta [cf. Meirovitch (1967)]. The linear homogeneous differ-
ential operator C; in eqn (51) is for pinned and clamped ends C; = 0, but C, = m/EI, and
C, = (m/El,) (d/dx) for free ends according to eqn (38). (Showing mathematically that the
orthogonality relation (51) is fulfilled for the four Euler boundary conditions, seems possible
only for pinned and free ends.)
The differential equation for the time function F, can then be obtained as
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2

i HoiF. = P, (52)
where
L a? 1 62p)
P,(0)= L (EP— I, ox? ¢, dx. (53)

The general solution of eqn (52) is given by Duhamel’s integral as

dF,(0) sin(@,0) 1 f Psinfo,(—)ldr, (54
0

F,=F
" w(0) cos (w, ) + a o, o,

where F,(0) and dF,(0)/d¢ represent the initial conditions.

3.4. Application of exact dynamic analysis procedure to simply-supported beams

The partial composite action theory for forced beam vibrations developed in the
preceding section is applied to a simply-supported ¢composite beam subjected to a dynamic
uniformly distributed lateral load of constant intensity p = po()[{x)°—<{x— L)°] (Fig. 7),
where { ) denotes Macauley’s singularity functions. With the boundary conditions (16)
with w = ¢ and p = 0, the eigenfunctions according to eqn (37) can be written as

¢, =cysin(ki,x); n=123,..., (55)
where
klv,,=ﬁ£; n=1,2,3,..., (56)

i.e. the same as for a solid beam (k,, =k,,,). If the eigenfunctions are normalized
according to eqn (51), we obtain the integration constant

1
= . (57)

Lim , , m
2 (Elokl‘"+a E1w>

The natural frequencies are then given by eqn (44). The time functions are given by eqn
(54) where now

zlw

Fig. 7. Simply-supported composite beam subject to dynamic transverse loading.
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pOU{L {g;lkx>°—<x>—L>ﬂ RO z]}ﬁn(kuﬂddx
Pt = ot

[z 5 s
2 \er, T Er

1/2
] o on=173,5.... (58)

I’ITE\/>

The time functions will here be evaluated for two types of dynamic loads: impulsive load
and step load.

_poy/2L[ « [

El,

Impulsive loading. The impulsive loading can be written as:

po(t) = ip<t)_ 1, (59)

where i, = the impulsive loading intensitiy (Ns m~') and <{¢)_, = Dirac’s unit delta function
(s~ "). The impulsive loading expressed as in eqn (59) includes the condition of initial
velocity (Girhammar, 1985a), i.e. the initial conditions are then given as

ow
W—B?—-O for t=0, (60)
or
dF,(0
F,(0) = d”t( ) =0. (61)

The time functions are then according to eqns (54) and (58) given by

zofL |:O(2 ki ]”2 .
EF=—Y—- sin(w,t); n=13,5,.... (62)
nnfw EI EIO

The final solution is then given by

4
w=2 0 (%X)Sin(wnt); n=13,5,.... (63)

It is noted that the series in eqn (63) is rapldly convergent. The maximum deflection
(x = L/2) 1s given by

nm
4i,sin| —
2

Wmax = z ";l';r’;"“'““‘ Sln (w tmdx) n= ]’ 3’ 5’ e, (64)

n

where w, !, is found by solving the equation dw,,,,/d¢z = 0. This must be evaluated numeri-
cally (Girhammar and Pan, 1992). Since the first terms in the series above are dominant, a
simplified exact theory can be given by using only the first term
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4i,
me,

(65)

~
Whax ~

If, instead of w,¢nux, (W,D)max = #7/2 is used in eqn (64), an upper limit of w,,,, can be given
as

: 4ig
ax S - max] = 5 =13....
Wonax < 2 prr— [(@nt)max] ;nnmwn n=135 (66)

The corresponding limit cases Wpy. 0 aNd Wmay o Can be obtained from eqns (63)—(66) by
substituting w, with w, ¢ and o, ,,, respectively. The characteristic maximum deflection in
the midsection is given by

Wy max Wy, EIoo 12 EIw El,—1 2
o = <l+—~—/2 . : (67)
wn,max,oo Wy, EIeﬂ' 1 + /kl 1,00

The maximum internal actions are given by eqns (12)—(15) and (23):

4ignnE, I sin 2) .
!max Z lonn mLZL) (nn/ ) Sln (wntmax) ; n = 1’ 33 5’ cec (68)

n

4iyEl,, sin (nn/2) EI mL*w}
Nima = —9, (:mmL“w . {(mt)"+(n7t) (1 - #)a L’— F7i Sin (Wptman) ;
n n 0

n=13,5,..., (69)

4iEIL, ) EL) , , mL‘o}
smdx szsw a r{(nn) +(n1r) (1_ F o L EI() sin (w tmax)’

n=13,5,..., (70)
4i El 1, ELoa*L*r
zmax_z : {( )2

EI
4 _ 0} 272
ELr + (nm)* + (nm) <1 )a L

mL’w,a’r EI

mL4 2
El,

}sm (@utow); n=1,3,5,.... (1)

where w,t,,, in the different equations are found in a similar way as the corresponding
value in eqn (64). It is noted that the series in eqns (68)—(71) are slowly convergent or even
non-convergent. Simplified exact and upper limit values for the internal actions can be
obtained in a similar way as for the deflection w.

Step loading. The step loading can be written as:
po() = po<8)°, (72)

where p, = the step load intensity [N m~'] and <{¢)° = Heaviside unit step function [1].
The initial conditions are given by eqns (60) and (61). The time functions are given by :
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2L Y L
F, = 1?()\/ [( o S ‘>] [t —cos(w,0)]; n=13,5.... (73)
nn./mo, EI, " El,

The final solution is then given by

4
W= Z—————@—g sin <nLn x)[l —cos(w,)]; n=1,3,5.... (74)

The convergence of the series in eqn (74) is one degree higher than for the impulsive loading
case. The maximum deflection (x = L/2) is given by

4p, sin (mt/2)
=y a1 =1,3,5,...
M}mdx ; nnmw [ COS (a)n tmax)] 3 n b k- 2 k (75)

where w,t,,,, is found from the equation dw,,,,/d¢ = 0. This must be evaluated numerically
(Girhammar and Pan, 1992). Using only the first term in the series we obtain

8po
mw’’

(76)

)
Whax ~

In the step loading case, no upper limit values similar to those for the impulsive loading
are available. The corresponding limit cases wy,,, o and wy,, ., can be obtained in a similar
way as for the impulsive loading case. The characteristic maximum deflection in the mid-
section is given by

Wamas _ Onoe _ EL, EI |EI,—1
i . = P el WL (77)
wn‘ma.\,x @y EIefT ] +a /kl 7
The maximum internal actions are given by
. (nm
4ponrE;l; sin (7
M, = ; R [1—cos(w,tm)]; n=13,5..., (78)
4p,EI, sin £
N.=-77—77 4 20 22 I — ,
I.max ; nnmL4 {[(l’lﬂ') +(n7t) ( Elm>a L :|[] cos (wntmax)]

2

wcs( tmax) ¢+
EIO 0 wl‘ﬂdx

Vs.max = m4Lp50E {(VITE) I:(nn)2 + (1 - %) ZLZ}[I —COos (wntmax)]

rEI 2 per o n=1,35,.... (19

+ D s (ot ~1,3.5 80

El, COS (W, finax) n=1.23,5..., (80
_ 4p0E1 r; E. 1oLy El, o

lle ZmL o? a r{( ) [—E—Ix‘;;_-’_( ) + EI L [I_COS (wntmax)]

2

Wy
+ 5L cos(w,,mdx)} n=13,5.. (81)
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4. APPROXIMATE DYNAMIC ANALYSIS

4.1. Eguivalent single-degree of freedom system

The rigorous analytical procedures developed in the preceding section are very complex
for all but the most simple support and loading conditions and not well suited for design
applications. For this reason approximate procedures for determining the deflection, and
the internal actions, which correspond to the exact analysis results, are presented here. A
comparison of the results obtained from the exact and approximate procedures applied to
simply-supported members will be made later in this section.

It is frequently possible to reduce the actual dynamic system to an equivalent system
with single-degree of freedom (Biggs, 1964). In order to define an equivalent single-degree
system, it iS necessary to evaluate the parameters of that system, namely M,, k., and P, i.e.
the equivalent mass (kg), the equivalent stiffness or resistance (N m~'), and the equivalent
load (N). The equivalent system is usually selected so that the deflection of the concentrated
mass is the same as that for some significant point on the structure, e.g. the midspan of a
beam. It should be noted that stresses and forces in the idealized system are not directly
equivalent to the same quantities in the structures. However, knowing the deflection, the
stresses in the real structure may be readily computed. Since the time scale is not altered,
the response of the equivalent system, defined in terms of displacement and time, is exactly
the same as that of the significant point on the structure (Biggs, 1964).

The transformation factors for the equivalent system are evaluated on the basis of an
assumed shape of the actual structure, usually either the fundamental mode or the static
deflection curve. For the methods presented here, the shape will be taken to be the same as
that resulting from the static application of the dynamic loads. This approach is considered
to be somewhat more accurate, particularly with regard to stress computation, and more
general since the characteristic shape is not required (Biggs, 1964). The static deflection
curve resulting from static application of the dynamic loads can then be written as:

w(x) = wsp(x), (82)

where wg = static deflection of the significant point on the member, and ¢(x) = assumed
shape of the beam.

The equivalent single degree of freedom system is one for which the kinetic energy,
internal strain energy, and work done by all external forces are at all times equal to the
same quantities for the complete system with infinite number of degrees of freedom when
vibrating in this normal mode alone. Equating kinetic energies:

d L B d 2
éMc[ ’th(’)] -2 J m(x)[ ”Zf,(’)cp(x)] dx, (83)

where w(x, 1) = ws(1)@(x), i.e. wg(f) is now the dynamic deflection of the significant point
on the member, and therefore,

M J;L m(x)e?(x)dx

J‘L m(x)dx

0

(84)

Vm

X

where v,, = transformation factor for the mass and M, = total real mass of the member.
Equating external load energies,
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L

P.(Dws(1) = L p(x, Hws(Ne(x) dx, (85)

and therefore

P L p(x, o(x) dx

Vv, = = ,
F@ J p(x, ) dr

0

(86)

where v, = transformation factor for the load and P,(¢) = total real load on the member.
Equating strain energies:

1 (* dlo(x)}? EA y?
1k, wi(0) =5 L {Elo[ws(t)%(z):I +E A°Nf+?}dx, (87)
P

where N, and V, are given by the expressions in the dynamic case corresponding to eqns
(12) and (13), respectively, in terms of w(x, t) = wg(f)e(x). The terms on the right-hand
side refer to the strain energy due to the internal moments, the strain energy due to the
internal axial forces and the slip energy due to the interlayer shear force, respectively.
Instead of solving the rather complicated integral (87), the following reasoning can be
applied to evaluate the integral in an alternative way. The stiffness of a beam is the internal
force tending to restore the member to its unloaded position. If we define this resistance in
terms of the load distribution for which the analysis is being made, the stiffness is
numerically equal to the total load of the same distribution which would cause a unit
deflection at the point where the deflection is equal to that of the equivalent system (Biggs,
1964). Thus, the transformation factor for the stiffness (v,) must be equal to the load factor,
ie.

— (88)

The assumed shape of the actual beam is thus given by eqns (8) and (9).
The equation of motion for the equivalent single degree of freedom system is given by

d?wq(t
w050 kw0 = P01 (89)
or
d?ws(z
ok, IS L kws () = v, 2,00, (90)

where k, = stiffness or resistance of the real member subject to the total real load distribution
considered as a static load, i.e. p(x). The general solution is

dwg(0) sin (w,?)
d¢ w,

ws = ws(0) cos (w, )+ + . iw fl P,(1) sin [w,(t—7)] dr, 91)

where
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(1)2'_ ke _ vkkr
CTM. V.M,

92)

4.2. Application of approximate dynamic analysis procedure to simply-supported beams

The equivalent single degree of freedom system method for layered beam vibrations
developed in the preceding section is applied to the simply-supported beam discussed before
(Fig. 7). The static deflection curve is, according to Girhammar and Gopu (1993a), given
by

L) a2
w(x)_24EIw {[(L) -2 T +L +oz"L“ EIO_I cosh (ax) —tanh 2 sinh (ax)

+ia?x?+da’xL— 1}}, (93)

i.e.
wy= DL 5 | 2 (% 1) L oL } (94)
S T 24EI |16 © «°L*\EI, cosh(aL/2) 8 ’
Vv p =YV K
0.646 . . — —
0.644 | 4

EI_/E.IO=4 (max. diff. 0.5%)

0.642 |-
EI /El =2 (max. diff. 0.2%)
0.640
E[_/]_:,]o:l (v p= V= 0.640)
0.638 . . s . | . 2 . NS S P
0 5 10 15
oL
v
m
0.512 . v . r : v v . . r . : ey
= . diff. 0.7%
0508 - EI_/EIO—4 (max. diff. 0.7%) 4
EI_./EIo=2 (max. diff. 0.3%)
0.504
EI [EI 0=l (v - _=0.5039)
osm n 1 " 1 1 " N L 1 —L n L "
0 5 10 15
al

Fig. 8. Transformation factors for uniformly loaded simply-supported composite beams versus aL
and EI_ /EI,.
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k /k
r

| P

02 [ —— Eq. (96) T
——— k/k _=~EI_/EI

i 2 1

0 5 10 15
al
Fig. 9. Relative stiffness k,/k, ., versus aL and EI, /EI,.

x\ 2<x>3+x N 24 <EIac 1)
L L L o*L*\ EI,
L
X I:cosh (ox) —tanh (o;) sinh (ax) — Jo?x? + o’ xL— ]}
- - — (95)

s;r 24<E1q 1) e
16  «*L*\ El, cosh (aL/2) 8

Then the transformation factors can be calculated according to eqns (84), (86) and
(88). The factors are shown in Fig. 8 as a function of aL and EI, /EI,. For a fully composite
section (aL — o0), the transformation factors are v,,, = 0.504 and v, , = v, = 0.640. It
is evident from the figures that the same transformation factors as for solid members can
also be used for simply-supported composite beams with interlayer slip. The equivalent
parameters are then given by M, = v,mL, P,(t) = v,po())L, k, = vik,, w] = k,/M,, where

p(x) =

P ki 7
5a*L* \ EI, cosh (aL/2) 8

where the stiffness for a beam with full composite action is k, ., = 384EI, /5L". The relative
stiffness of the composite beam according to eqn (96) is shown in Fig. 9 versus oL and
EI_|EI, (solid lines). Equation (96) is also compared to the approximate stiffness using the
effective bending stiffness according to eqn (46) for the fundamental mode (n = 1), i.e.

(96)



Dynamic analysis of composite members 817

Impulsive loading i, = 0.5 kNsim

Step loading p, = 15 Kiim
R IR YNNI YY
R — — e —— ——

K

ri=005 ] ]
Zog, 0 = 0.068
0.095 r=0.145 cg,o_‘r_ !
rg= -
HE 200 A 02 Lz - ‘r-ch,o.=°-°77
SIS 1312 —e— T
4,=5.383:10"3 m2
my = 360.0 kg/m my = 42.4 kg/m m = 402.4 kg/m
EqA; = 12750 MN EpAp = 1129.8 MN EAg = 2404.8 MN
Eqly = 1.063 MNm? Eplp=7.749MNm?  Elg = 8.812 MNm?
Br/ia? = 0.588 ylo2 = 0530 El_= 21.388 MNm?
K =400 MPa ol = 7.644

Fig. 10. Simply-supported composite beam of concrete and steel subject to impulsive and step
loading, respectively.

k, . ~ 384ElLs/5L° for k, |, = n/L (dashed lines). It is evident from the figures that the
effective bending stiffness is very close to the exact one. This effective bending stiffness
developed for a vibrating composite beam is for a simply-supported beam the same as the
effective bending stiffness developed earlier for buckling of a composite beam-column
(Girhammar and Gopu, 1993a). Since the stiffness %, is evaluated under static conditions,
the latter effective bending stiffness should be used for the general case.

The deflection in the significant point on the beam (midspan) will be evaluated here
for the same types of dynamic loads as before.

Impulsive loading. Using eqns (59) and (60) in eqn (91) we get

oL
ws(t) = Zv:ﬁﬁi sin (,1). 97)

e e

The corresponding limit cases ws,(f) and ws ,(f) can be obtained by substituting w,, v,
and M, with their values in the non-composite and full composite action cases, respectively.
The relative amplitude of the midspan deflection is then given by wg/ws, =
(k. o/k) " ~ (EI,/ELg)""? (since vy =V, ® Vi = Voo and V,, X V). The maximum
internal actions are obtained by using eqns (97), (95) and (82) in eqns (12)-(15), i.e.

Mi,max = } sin (wet)’ (98)

Vg Ed, {3 24 (Ezm >cosh(ozL/2)—1
Co,M,L a’L? \ EI, cosh (aL/2)
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Maximum midspan deflection, w
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45

L 107 m)

40

35

30

25

T T T

€: exact theory;

s: simplified exact theory (max. error -5.1%);
u: upper limit value (max. error 2.7%});

a: approximate theory (max. error -5.5%);

Example: Fig. 10, aL = 7.644

W
max,0

mm

39.0
39.0
41.0
38.9

max

mm

28.9
275
29.3
27.4

max,=

mm

25.0
25.1
26.3
25.0

REDN

e: solid

s: dash

u: dashed-dotted

a: dashed-triple dotted

10

Composite action parameter oL

Fig. [1. Maximum midspan deflection of simply-supported concrete-steel beam obtained from the
exact and approximate theories versus «L under impulsive loading.

N VEL, {gf_[l+(51% 1) 1
tmax = CaeM,Lr |a?L? El, cosh (aL/2)
EI, 24 (EI, cosh (xL/2)—1] CmL?w?
(I EI )[” «’L? (EIG - ]) cosh (aL/2) ]_ 2E1, |, 99
_ viEL, [ 24 ( ) El,
Vomas = CweMeLzr{ Ay R G
24 (E mL*w}? 24 (EI
124 (== e e [ 2 —
[ ocL(EI l)tanh(aL/Z)] SEl, [l a3L3(EIQ 1)
x [tanh (aL/2) ~ %aL]:I} sin (w,r), (100)
vigEl.r; V12ELr 24 [ E.Lr Erl,
vV —-_7 Odden? § idi =« Ll _
f,max Cw‘,M‘,Lzr { ElLr. + oL (EIQC ', l)(EI l) tanh (aL/Z)
Ef, 24 mlL*w?
1- =21 S | e
+( ELD)[ L (Efn )mh (L 2)] +’El,

Jie

oL}

24 (FEI

E: - 1)[tanh (aL/2)— -éaL]]} sin (@.1), (101)

(
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60 T A e e B
[ (~10° m) j
nax.0 e: exact theory; ]
55 s: simplified exact theory (max. error 0.4%), i
L a; approximate theory (max. error -0.4%);
» r -
g 50 r Example: Fig. 10, a L = 7.644 ﬂ
; r W, max,0 wmlx.'-
g' 45 [ mm mm mm ]
33 F e: 286 574 237 1
-] st 287 575 238 ]
S I a 285 574 237 ]
~ 40 | .
=] L 4
=
g i
7)) L
= I )
£ 35 | .
s [ e: solid ]
£ [ s: dash ]
'5 30 a: dashed-triple dotted
I
L
L
25
20 [ " . —_ " 1 2 —_— ) I S L ]
0 5 10 15

Composite action parameter oL

Fig. 12. Maximum midspan deflection of simply-supported concrete—steel beam obtained from the
exact and approximate theories versus aL under step loading.

where

s 24 (EI I WL
c=24 2 (e —1. I
16 T 2Lt (EIO 1>[cosh L) T 8 l] (102)

Step loading. Using eqns (72) and (60) in eqn (91) we get

VoPoL

Wl M, [1—cos (w,1)]. | (103)

ws(f) =

The corresponding limit cases wgo(f) and ws , (f) can be obtained by substituting w,, v, and
M, with their values in the non-composite and full composite action cases, respectively. The
relative amplitude of the midspan deflection is then given by wg/ws,, = k/k = EI /Elq
(since v, = v, ® V4 o, = V, and v, X V). The maximum internal actions are obtained by
using eqns (103), (95) and (82) in eqns (12)—(15), i.e.

M imax —

v,poEil; {3 24 <EIw )cosh(ch/Z)—l
o

- - 4
Co?ML " ’L’\El, ) cosh(aL/2) }[‘ cos(@.0],  (104)

SAS 30:6-F
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Impulsive loading i = 0.0333 kNs/m
Step loading Po=1kN/m

—x,u e e s g ——
IITTTTITY
L=4dm [
4
v Z,W
b,=0.300
F—
4,=0.050 T 0025 T 26, 20,025
»+— v/ #*
% r2=0‘075 r=0100m
d=0.150 /
% K24
.
b,=0.050
m, = 36.0 kg/m m, = 3.75 kg/m m = 39.75 kg/m
EqA; = 180.0 MN EpAp =60 MN EAg = 240 MN
Eqly = 0.0375 MNm? Eplpy= 0.1125 MNm?  El = 0.150 MNm?
Bria? = 0.75 y/a2 =075 El_= 4EI0 = 0.60 MNm?
K = 50 MPa ol =8.433

Fig. 13. Simply-supported composite beam of concrete and wood subject to impulsive and step
loading, respectively.

N __JM‘L{A[I_F(EI“’. 1 __‘_l
b T CwlM,Lr |o2L? El, cosh («L/2)
El, 24 (EI, cosh (aL/2)—1
 —_— e - —
+( Elx)l} t (EIO 1) cosh (uLy2) |1} ~C0s (@Dl

v,poEl, mL*
M.Lr «’E,

cos (w,t), (105)

v,poEL, 24 (Elw
samax CcofMyLzr{ L \E1, ! )@nh (L)

EI 24 (EI,
+ (1 — EI—:)I:]2+ oL (EIO — 1>tanh (aL/Z)]}[l —cos (w,1)]

_ vpoEL, mL? 24 (EI,
CM,L*r «*EI, a’L3 \ EI,

— 1)[tanh (aL/2)— %ozL]} cos (w,t), (106)
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N L J
g 26 Example: Fig. 13, ¢ L = 8.433 T
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Fig. 14. Maximum midspan deflection of simply-supported concrete-wood beam obtained from the
exact and approximate theories versus «L under impulsive loading.

_ vopoEL,r; V12ELr 24 ( ELr El,
Vi.max =+ waMeLzr{EIwr,- + oL EIOOI',» -1 EIO —1 Jtanh (aL/2)

EIl, 24 (EI,
+ <1 — E)[124- N <E’I—0 — 1) tanh (aL/Z)}}[l —cos (w,1)]

v,poEl.r; mL*
CM,L*r &’EI,

{1 —- afzg (i,—?: - l)[tanh (aL/2)— %aL]}cos (w.0), (107)

where C is given by eqn (102).

5. ILLUSTRATIVE EXAMPLES

The deflection and internal actions in the concrete-steel composite beam shown in Fig.
10 and the concrete~-wood composite beam in Fig. 13 are computed for different slip
modulus values by using the expressions obtained from the exact analysis procedure and
from the approximate procedure. The deflections obtained from the two procedures are
compared in terms of their maximum values in Figs 11, 12 and Figs 14, 15, respectively,
for different values of aL.

The analyses show that the displacements obtained by the approximate theory are
extremely close to the exact values for these particular cases. For the case of impulsive
loading, the errors are less than 6% and for the case of step loading, the errors are less than
1%.
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Fig. 15. Maximum midspan deflection of simply-supported concrete-wood beam obtained from the
exact and approximate theories versus «L under step loading.

6. SUMMARY

Closed-form solutions for the displacement functions and internal actions in composite
members with interlayer slip and various boundary conditions are developed from an exact
analysis procedure based on the one-dimensional linear elastic partial composite action
theory, and an approximate analysis procedure based on a single degree of freedom equi-
valent system. The methods proposed are general in nature and can be applied to different
loading conditions, material and geometry parameters. The admissable boundary con-
ditions necessary to solve for the eigenfrequencies in the exact analysis case are presented.
The validity of the solutions are demonstrated by comparing their solutions at their lower
and upper limits with well-known results for ordinary beams with non-composite and full
composite sections, respectively. Non-dimensional graphs are generated to show the effects
of variation in the physical and geometric properties of the subelements and in the shear
connector properties on the eigenfrequencies of composite members with boundary con-
ditions according to the four Euler cases. An approximate solution for the eigenfrequencies
in the exact analysis procedure is also proposed and evaluated by comparison with the non-
dimensional graphs based on the exact solution. The Euler coefficients to be used in the
approximate solution for the fundamental eigenfrequencies of composite members with
boundary conditions corresponding to the four Euler cases are presented.

The exact and approximate analysis procedures are applied to a simply-supported beam
to illustrate the difference in the two solutions. The transformation factors for uniformly
loaded simply-supported composite beams were found to be approximately the same as
those for solid beams. The analysis procedures are applied to the following cases : concrete—
steel beam under impulsive and step loadings, and concrete-wood beam under impulsive
and step loadings. The analyses show that the displacements obtained by the approximate
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theory are extremely close to the exact values for these particular cases. For the case of
impulsive loading, the errors are less than 6% and for the case of step loading, the errors
are less than 1%.
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